9 research outputs found

    A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades:Part B

    Get PDF
    Many real-world optimization problems are dynamic. The field of dynamic optimization deals with such problems where the search space changes over time. In this two-part paper, we present a comprehensive survey of the research in evolutionary dynamic optimization for single-objective unconstrained continuous problems over the last two decades. In Part A of this survey, we propose a new taxonomy for the components of dynamic optimization algorithms, namely, convergence detection, change detection, explicit archiving, diversity control, and population division and management. In comparison to the existing taxonomies, the proposed taxonomy covers some additional important components, such as convergence detection and computational resource allocation. Moreover, we significantly expand and improve the classifications of diversity control and multi-population methods, which are under-represented in the existing taxonomies. We then provide detailed technical descriptions and analysis of different components according to the suggested taxonomy. Part B of this survey provides an indepth analysis of the most commonly used benchmark problems, performance analysis methods, static optimization algorithms used as the optimization components in the dynamic optimization algorithms, and dynamic real-world applications. Finally, several opportunities for future work are pointed out

    Automated Design of Production Scheduling Heuristics: A Review

    Full text link

    New Sampling Strategies When Searching for Robust Solutions

    No full text

    A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades - Part A

    No full text
    Yazdani D, Cheng R, Yazdani D, Branke J, Jin Y, Yao X. A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades - Part A. IEEE Transactions on Evolutionary Computation. 2021;25(4):609-629.Many real-world optimization problems are dynamic. The field of dynamic optimization deals with such problems where the search space changes over time. In this two-part article, we present a comprehensive survey of the research in evolutionary dynamic optimization for single-objective unconstrained continuous problems over the last two decades. In Part A of this survey, we propose a new taxonomy for the components of dynamic optimization algorithms (DOAs), namely, convergence detection, change detection, explicit archiving, diversity control, and population division and management. In comparison to the existing taxonomies, the proposed taxonomy covers some additional important components, such as convergence detection and computational resource allocation. Moreover, we significantly expand and improve the classifications of diversity control and multipopulation methods, which are underrepresented in the existing taxonomies. We then provide detailed technical descriptions and analysis of different components according to the suggested taxonomy. Part B of this survey provides an in-depth analysis of the most commonly used benchmark problems, performance analysis methods, static optimization algorithms used as the optimization components in the DOAs, and dynamic real-world applications. Finally, several opportunities for future work are pointed out

    A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades - Part B

    No full text
    Yazdani D, Cheng R, Yazdani D, Branke J, Jin Y, Yao X. A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades - Part B. IEEE Transactions on Evolutionary Computation. 2021;25(4):630-650.This article presents the second Part of a two-Part survey that reviews evolutionary dynamic optimization (EDO) for single-objective unconstrained continuous problems over the last two decades. While in the first part, we reviewed the components of dynamic optimization algorithms (DOAs); in this part, we present an in-depth review of the most commonly used benchmark problems, performance analysis methods, static optimization methods used in the framework of DOAs, and real-world applications. Compared to the previous works, this article provides a new taxonomy for the benchmark problems used in the field based on their baseline functions and dynamics. In addition, this survey classifies the commonly used performance indicators into fitness/error-based and efficiency-based ones. Different types of plots used in the literature for analyzing the performance and behavior of algorithms are also reviewed. Furthermore, the static optimization algorithms that are modified and utilized in the framework of DOAs as the optimization components are covered. We then comprehensively review some real-world dynamic problems that are optimized by EDO methods. Finally, some challenges and opportunities are pointed out for future directions

    Possibilities and limitations of decentralised traffic control systems

    No full text
    corecore